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The existence of a point detonation asymptotically equivalent to the detonation of a 
finite-volume charge (FVC) in an ideal gas follows from the laws of attenuation of blast 
waves at large distances from their place of origin [i, 2]; the parameters of the blast 
wave from the detonation of the FVC tend asymptotically to the parameters of the blast wave 
from the asymptotically equivalentpoint detonation (AEPD). This fact is consistent with 
the existing results of numerical calculations of various FVC detonation models [3-8]. 

The energy of the AEPD can be determined directly by numerical calculations of specific 
FVC detonation models [7, 8]. The expansion of the detonation products is rendered nonisen- 
tropic by secondary blast waves [3, 9, i0]; as a result, the exact analytical determination 
of the AEPD energy is an unsolvable problem at the present time. This predicament creates 
a natural requirement for the theoretical derivation of analytical estimates of the AEPD 
energy from just the initial parameters of the detonation products and the external gaseous 
medium. The work A~' done by the products of instantaneous detonation on air in the isen- 
tropic expansion of those products to the undisturbed air pressure has been adopted in [ii] 
(p. 447) as the approximate value of the AEPD energy. However, this approach disregards 
all the principal factors governing the AEPD energy and thus leads to underestimated values 
of the latter both in relation to numerical calculations [7, 8] and in relation to the re- 
sults obtained in [7] and the experimental data of [12]. 

In the present article we propose a procedure for determining the AEPD energy from 
the initial state of the detonation products and their coefficient of cubical expansion, 
and we obtain analytical upper and lower bounds for this energy. For elementary models of 
FVC detonation we derive simple analytical expressions for one of these bounds, which pro- 
vide a good approximation for the AEPD energy. The accuracy of the approximations obtained 
under the assumption of isentropic expansion of the detonation products is limited by the 
influence of the secondary blast waves. 

i. Let us suppose that a finite amount of energy E 0 is released instantaneously, i.e., 
a point detonation [13] occurs, at time t = 0 at a certain point O of an unbounded space 
occupied by a homogeneous gas at rest with pressure P0 and adiabatic exponent ~. We choose 
an arbitrary closed control surface S bounding a finite volume V, which contains point O, 
and we determine the total energy flux across this surface. 

At the initial time the total energy of the gas inside the volume V is equal to the 
sum of its internal energy E = p0V/(y - i) and the energy E 0 released in the thermal explo- 
sion. We conclude on the basis of the well-known results of numerical calculations of the 
point detonation problem [13] that in the limit t § ~ the gas in the volume V is at rest, 
its pressure is equal to the pressure P0, and the total energy is equal to the energy E. 
Consequently, all the energy released in the point detonation flows across the control sur- 
face S in the time required for complete equalization of the pressure of the disturbed gas. 

Making use of this characteristic property of a point detonation, we determine the 
AEPD energy for FVC detonation in a homogeneous gas at rest with pressure P0, density P0, 
and adiabatic exponent ~. Let the rest fuel mixture occupy a volume V I bounded by a sphere 
of radius r0, and let it be characterized by arbitrary distributions of the density Pc, 
specific heat of detonation Q, and adiabatic exponent ~c with respect to the Lagrangian 
coordinate m. The Lagrangian coordinate m is interpreted as the mass of the gas contained 
in the volume of a sphere of radius r. Without committing to any specific model of detona- 
tion, we assume that the initial state of the detonation products is characterized by the 
velocity ul(m), pressure pl(m), density p1(m), and adiabatic exponent ~1(m). 
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In solving the stated problem, we assume that the expansion of the detonation products 
is an adiabatic process. To simplify the subsequent calculations, we replace the initial 
fuel mixture by a fuel mixture with parameters Pc, Q0, and ~1 such that the initial state 
of the detonation products is identical with the state of the original mixture. By virtue 
of the law of energy conservation, the effective specific heat of detonation is Q0 = Q + 
(YI - Yc)P0/(Yc - I)(YI - l)Qc, and the corresponding effective detonation energy is 

~'n o 

E o =~ QOdr a ( 1 . 1 )  
o 

(m 0 is the mass of the fuel mixture). 

For the control surface we choose the surface S bounding the volume V F of the detona- 
tion products after expansion to the pressure P0- At the initial time the energy of the 
gas in V F is equal to the sum of the initial energy of the detonation products 

WJ'0 9 ,1 ] 
E l =  + "Pl (L -- 1) 

0 

dm ( 1 . 2 )  

and the energy of the undisturbed gas contained in the volume V F minus the volume VI: 

m 0 

o "PF ~" ~--~--~dm 

[0F(m) is the density of the expanded combustion products]. 
detonation products is 

E3 = ~ Po dm 
Y1 - -  t PF" 

0 

(1.3) 

The energy of the expanded 

( 1 . 4 )  

On the basis of the energy conservation law we thus find that 

E~ = E I +  E 2 - - E  ~ ( 1 . 5 )  

expresses the energy transmitted across the selected control surface or across any other 
surface enclosing it. Consequently, E~ is the AEPD energy. 

In the calculation of E~, because of the energy conservation law, the expression for 
E 1 (1.2) can be replaced by the equivalent expression 

E I ~  E ~  ( 1 . 6 )  

where the effective internal energy of the fuel mixture is 

~ 0  

p0 
E1 = Pe ('~1 - -  t )  din. ( 1 . 7 ) '  

0 

By analogy with the energy E~, we determine the work A~ done on the external gaseous 
medium by the detonation products expanded to the pressure P0: 

A ~  = E I - - E  ~. ( 1 . 8 )  

We s a y  t h a t  A~ d e t e r m i n e s  t h e  work c a p a c i t y  o f  t h e  d e t o n a t i o n  p r o d u c t s .  Compar ing  Eqs .  
( 1 . 5 )  and ( 1 . 8 ) ,  we f i n d  E~ - / ~ o  = g2 .  C o n s e q u e n t l y ,  E~ e x c e e d s  A~ by t h e  e n e r g y  o f  t h e  
u n d i s t u r b e d  g a s  d i s p l a c e d  by t h e  expanded  d e t o n a t i o n  p r o d u c t s  f rom t h e  vo lume  fo rmed  by 
t h e  d i f f e r e n c e  b e t w e e n  V F and  V I .  

2.  Fo r  a c o n s t a n t  v a l u e  o f  t h e  a d i a b a t i c  e x p o n e n t  Yx o f  t h e  d e t o n a t i o n  p r o d u c t s ,  Eqs .  
( 1 . 5 )  and ( 1 . 8 )  a r e  t r a n s f o r m e d  as  f o l l o w s  i n  a c c o r d a n c e  w i t h  ( 1 . 1 ) - ( 1 . 7 ) :  
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Eoo = E 0 - -  (V - -  '~1) ( V F - -  V]-) ( ? - -  i) ( ? , - -  1) Po; ( 2 . 1 )  

A~ = E ~ ~ --VI 71_ i Po" (2 .2)  

It follows from Eq. (2.1) that the inequality E~ ~ E ~ (7i ~ 7) is associated with the 
difference between the properties of the detonation products and the external gaseous medium 
as expressed by different values of their adiabatic exponents. 

We use the following equation, which is a direct consequence of Eqs. (2.1) and (2.2), 
to estimate a priori bounds of the energy E~: 

E~ 3',--~E0 + ? - - ? '  
- -  V - t - i - ~  - & ' "  (2 .3)  

Invoking the inequality A~ > 0, which holds for E ~ > 0, we find the simple analytical bounds 

?, - -  i E ~ Eoo ~5 ~-Z-y- (Y~ ?i), (2 .4)  

which take into account the influence of secondary blast waves generated in FVC detonation 
on the energy E~ under the above-stated assumptions. The coefficient of E ~ in (2.4) has 
a simple physical significance: It is equal to the ratio of the effective energies of the 
products of instantaneous detonation with the adiabatic exponents Yi and ~ and equal initial 
excess (gauge) pressures. 

3. If entropy is assumed to be conserved in each individual particle of the expanding 
detonation products, the relation Pi(m)/PF(m) = [pi(m)/p0]i/yi(m) holds, which enables us 
to determine E~' and A~' in the form 

m o 

~ 2  = ; 2  + I~,o/(~ - 1)1 ~ {[(pl/po) ' / ~  - t ] /~1}  d ~ ;  
0 

( 3 . 1 )  

0 

+ Pl--Po Po --I]} dm, 
01 (Vl--t) Ol(Vl -~) [(P/Po) l/% 

(3 .2)  

i.e., exclusively from the initial state of the detonation products and the external gaseous 
medium. 

In particular, for the expanding products of an instantaneous detonation with constant 
initial values of the pressure Pi and adiabatic exponent u we have 

E g = n E  ~ A g = ~ E  ~ (3 .3)  

The dimensionless characteristics of the FVC detonation (the energy coefficient q [7] and 
the coefficient a [ii]) are functions of the dimensionless initial excess pressure Api = 

(Pi - P0)/P0: 

Y -- tY-! (~ (Api); (3.4) 

= i -  ~; (A/,,) (~ (Ap~)= [(I + Ap~)'/~- l ] / ~ p l ) .  ( 3 . 5 )  

Asymptotic representations for the coefficients ~ and ~ will be to our advantage in 
the ensuing investigation, viz.: for Api ~ i 

for Apl >> 1 

~](Ap,)__~-~__t)v 1 2yl(yl_t) Ap,, ~(AI),)= ,i,------~q---~?~ Api; (3.6) 

-(, .-I /v 
V- -LApi ,  ~ ) ~, ApT (h-Wv~ n(6p,)= 1 ~--t ~(6pl)= I--  (3.7) 
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It follows from a quantitative analysis of relations (3.4) and (3.5), which were ob- 
tained on the assumption of isentropic expansion of the products of an instantaneous detona- 
tion, that the calculation of the energy E~' according to [ii] undervalues this energy by 
~10%, even for condensed high explosives. The amount of undervaluation attains 40-50% for 
fuel-oxygen and fuel-air mixtures. The increase in the entropy of the detonation products 
as a result of secondary blast waves causes the volume V F of the expanded detonation prod- 
ucts to increase. Since 

A~ = A~ - -  poAi~/(lh - -  1), E ~  = E ~  - (? - ?,)  poAVF/(?~ - -  t ) ( ? - -  t) ( 3 . 8 )  

in this case (AV F is the increment in the volume of the expanded detonation products), we 
infer from the inequality A~/E= < A~'/E~', which follows from (3.8), that the relative 
undervaluation of E~ when it is replaced by A~ is even more appreciable. 

The density of the adiabatically expanded detonation products obeys the inequality 
Pl/PF > (Pl/P0)I( u which enables us to obtain additional bounds for E~ on the basis of 

(1.2)-(1.5) and (3.1): E~ ~ E~' (YI ~ Y). These bounds together with (2.4) yield im- 
portant upper and lower bounds for E~: 

?~ --___2 E0 ~ E~ ~ E~ (~1 ~ % ( 3.9 ) ? -  1 

We now determine the AEPD energy for isentropically expanding products of a Chapman- 
Jouguet detonation. Since the propagation of the wavefront of such a detonation wave is 
a steady-state process, the entropy is identical for all particles of the detonation prod- 
ucts. Consequently, the pressure pz(m) and the density p1(m) are related by the equation 

71 
Pl = ~i~ (3.10) 

where the constant k is determined from the conditions at the detonation wavefront as a 
compression shock with heat input [13]; it has the form 

,'o ( 0 + ' +  '§ 
k= ~'o~'0'1+ ~) b' l+~/ (B+ VB--~C~- ~D~' (B = (v~ - t )  Q~ + "~,). 

For the expanded detonation products we obtain the expression PF = (Po/k)I/71 from 
relation (3.10); substituting this expression in Eq. (3.1), we obtain 

E~ = ~]E ~ (3.11) 

Here 

, ] =  t ( 7 - - t ) ~  t~-i \?-1~'~,, - - I  ; ( 3 . 1 2 )  

q =  9 ,Q~ , B ,  = ~ 1  ~- (71 ~- l) q ~- VI] 'I  ~- (~1 -~ i) q]2--~ 2" ( 3 . 1 3 )  

It follows from relations (3.10) that D has the following asymptotic representations in 
the limiting cases q << i and q >> i: 

( 7 ' - - t ) 7  (?--  7') (71--1) ] f  271 q (q<<l);  ( 3 . 1 4 )  
i] (q) I v -  ~) v~ + 3v~ (v - t) y %  + 1 

2]/~t ., ~] (q)=  1 (_~'--vl)_v,- __(,;_,~/~, (q>> 9 .  ( 3 . 1 5 )  
(v - 1) (L + I) ~'  

On t h e  b a s i s  o f  t h e  e n e r g y  c o n s e r v a t i o n  law,  t h e  i n i t i a l  d i m e n s i o n l e s s  e x c e s s  p r e s s u r e  o f  
an i n s t a n t a n e o u s  d e t o n a t i o n  i s  e x p r e s s e d  as  Apz = p lQ~  - 1 ) / p 0  and ,  by v i r t u e  o f  ( 3 . 1 2 ) ,  
c o i n c i d e s  w i t h  t h e  e f f e c t i v e  d i m e n s i o n l e s s  s p e c i f i c  h e a t  o f  d e t o n a t i o n  q. Compar ing  ( 3 . 7 )  
and ( 3 . 1 5 ) ,  we a r r i v e  a t  t h e  c o n c l u s i o n  t h a t  f o r  q >> 1, b e c a u s e  o f  t h e  i n e q u a l i t y  0 .942  < 

2 ( 1 - 1 n z ) / l n 2 1 n 2  < u  + 1) < 1, wh ich  h o l d s  f o r  u ~ 1; t h e  v a l u e  o f  t h e  e n e r g y  
coefficient for the expanding products of a Chapman-Jouguet detonation is greater (smaller) 
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than the value of the same coefficient for the expanding products of an instantaneous de ~ 
tonation for Yi < Y (Yz > 7). An additional numerical analysis of Eqs. (3.4) and (3.11) 
and of relations (3.6) and (3.14) shows that the foregoing conclusion as to the values of 
the energy coefficients for the two investigated detonation models is true for any values 
of q > 0. Moreover, the relative difference between the values of these energy coeffi- 
cients for Y~ > i.i does not exceed 3%. 

The specific values obtained for the AEPD energies in the case of expanding products 
of a Chapman-Jouguet detonation exhibit good agreement (the relative discrepancy does not 
exceed 1%) with the values obtained in [8] for five compositions of a detonating gas mix- 
ture. 

4. Let the state of the gas in the volume V bounded by the spherical surface of the 
blast wave at an arbitrary time after the start of expansion of the detonation products 
be characterized by the functions p(m, t), p(m, t), u(m, t), and 7(m) [y(m) is a piecewise-constant 
function, which is equal to Yl for the detonation products and is equal to 7 for the gas 
disturbed by them]. Assuming that the expansion of the detonation products and the dis- 
turbed gas is an isentropic process, we find their total work capacity. We use the inte- 
gral equation (3.2) for this purpose. Replacing the upper limit of integration m 0 in this 
equation by the Lagrangian coordinate m 2 of the blast wave and replacing the functions um, 
Pl, Pi, and 71 in the integrand by the respective functions u, p, p, and Y, we obtain the 
unknown work: 

m 2 

p ]do A = I ~ - - I  2 - I 3 ,  11= +~(?-----~ 
0 

~~ ~ (4 i) 
I Po din,, [~=f Po 

12= ' (?1 _ l) PF(m ) (?_ i) pF (m) dm. (4 .1)  
0 m o 

The integral 11 determines the total energy of the gas behind the blast wave. Accord- 
ing to the energy conservation law, it is equal to the sum of the effective detonation ener- 
gy E ~ the internal energy of the fuel mixture occupying the volume VI, and the initial 
energy of the external gaseous medium in the volume V minus the volume VI: 

Po vl ~o(V-VI) 
I s = E ~  ? - - t  ( 4 . 2  

The integrals 12 and I s express the residual energy of the detonation products expanded 
to the pressure P0 and the gas disturbed by them at the given time. The condition of en ~ 
tropy conservation in each individual particle of the gas behind the blast wavefront per- 
mits 12 to be written in the form 

m 0 . . I /?  I 

P0 ~ ( P l ]  d ~  (4 .3)  
4 -~-ljo ~p-T/ 77" 

The same condition can be used to replace the integration in space at the given time by 
integration along the path of the blast wavefront in the computation of I3, so that 

3 = - -  

~7~ 2 

v - ~  J I_ p. ] o(m2)" 
mo 

(4.4) 

Taking Eqs. (4.1) and (4.2) into account, we then have 

m 2 

A(m2)=A(mo)--  P--~ f (|)9o-ldm2. (4 .5)  ?-- 
~0 

Here A(m 0) = A~, and the function ~ can be expressed as follows on the basis of the Hugoniot 
adiabat: 
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'/V (?-- i) AP+ 2? 1 ( 4 . 6 )  
(,)(Ap) = (t + Ap) F-$75Ap+2v 

[Ap = (P2 -- P0)/P0 is the relative excess pressure in the blast wave]. The radius r 2 of 
the blast wavefront is related to the Lagrangian coordinate m 2 by the equation m 2 = m 0 + 
8(r2 v - r0V)O0/v, where v is a symmetry index (v = i, 2, 3 corresponds to planar, axial, 
and point symmetry), and 8 = 2~(v - i) + (v - 2)(v - 3)/2. We introduce the dimensionless 
radius of the blast wavefront R = r2(P0/~E~ i/v. We denote its initial value by R 0 and 
transform (4.5) as follows: 

A (R) = A (No) 
R 

6TiE ~ 
,~----~ f (D (Ap) RV-~dR. (4.7) 

For simplicity we restrict the ensuing discussion to the case of expanding products 
of an instantaneous detonation with a constant initial distribution of the parameters. 
Then 

_ , ~ ( 4 . 8 )  A (Ro) = E o [t - -  ~ [apt)] (Ap~ = (Vt t) v, SRo~ (Ro)). 

Passing to the limit R 0 + 0 in (4.7) and allowing for the fact that, according to (4.8), 
limA(H0) = E ~ we obtain the expression 

A PD = E ~  \I  -- ~--I o (I) (Ap)  B V - l d R  , (4.9) 

which is valid for a point detonation. At large distances from the center of the FVC deto- 
nation, the work that can ultimately be done by the detonation products and the disturbed 
medium on the undisturbed medium must tend to its value for the AEPD. This condition im- 
plies that 

lira [A (R)/N (Ro) ] = lira A pD(R). 

Since the right-hand side is a constant, which is uniquely determined by the parameters 
of the point detonation, the value of the left limit for FVC detonation does not depend 
on R0; we denote this constant by A,, whereupon we obtain 

i A* = A (Ro)/~ t (Ro) --  ? __---~ (I) (Ap) RV-~dR. (4.1 O) 
B o 

To evaluate it, we let R 0 + ~ in Eq. (4.10). We show that 

lira ~ ~(Ap) R"-'dR= 0. (4.11) 
RO~ R 0 

In fact, since the excess pressure of the products of instantaneous detonation obey 

apt << i (R0 >> I), (4.12) 

and the excess pressure in the blast wave obeys &p < &Pl, the inequality Ap << 1 (R 0 >> i) 
holds. The latter enables us to use the relation ~(Ap) = SAp 3 for the integrand ~(Ap) and 
to represent the integral (4.10) in the form 

(Ap) R " - ' d R  = [3 (Z4 + I~), L = ~ ~ (Ap) n~-~dn, 
BO R o 

15 --- �9 (Ap) .RV-~dR. (4.13) 
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We interpret R~ as the blast wavefront radius at which the well-known asymptotic expressions 
for Ap(R) (see, e.g., [13]) begin to be valid: 

Ap(R)  = air  -~ 

. A p ( R )  = a~R -~ 

Ap(R) = a3/R I / I n  R -F a4 

(v = 1 ) ,  

(v = 2),  

(,~ = 3 )  

(4.14) 

(ai are constants). 

For R 0 m i, R I corresponds to the radius of the blast wavefront when it overtakes 
the rarefaction wave generated in the decay of an arbitrary discontinuity and reflected 
from the center of symmetry, so that 

R i = cR~ (4.15) 

(c is a constant). 

Taking (4.12), (4.15), and the inequality Ap < Apl into account, we obtain the upper 
bound for the integral 14 < [(YI - l)~/6]3cVR0 ~, so that ]imI~ = 0. 

In turn, the substitution of (4.14) in the integral 15 yields the asymptotic expres- 
sions 

15 = 2 a ~ R 7  ~  (v  = l ) ,  

= 4 a ~ R T  a'~5 (v  = 2 ) ,  

15=2a~(InR l+aa)  -~ (~=3). (4.16) 

We infer from (4.16) that lim 15 = 0. We have thus proved the validity of Eq. (4.11). Con- 
R0 ~ 

sequently, A, = tim [A (Ro)/N(Ro) ]. We pass to the limit by means of (4.8). As a result, A, = 

( y  - Z)E0/~. 

Finally, relation (4.10) yields the following expression for the integral of the en- 
tropy losses in the blast wave for FVC detonation: 

oo 

6~ (no) r ( @ )  n ~-~ d R  = a (Ro) - ? n (R~ 

Ro 

Letting the initial radius R 0 of the volume of combustion products tend to zero, we find the 
integral of entropy losses for a point detonation 

oo 

?-- t (Ap) d R  = -~,, 
0 

the form of which coincides with the integral obtained in [9] by an alternative procedure. 

i ,  

2. 

3. 

4. 

5. 
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GASDYNAMIC CHARACTERISTICS OF FLOWS IN PROBLEMS OF THE LAUNCHING 

OF INCOMPRESSIBLE PLATES BY DETONATION PRODUCTS 

A. V. Attetkov, M. M. Boiko, L. N. Vlasova, 
and V. S. Solov'ev 

UDC 534.222.2 

There has been growing interest lately in analytical methods for the solution of one- 
dimensional gasdynamic problems involving the launching of incompressible plates [1-7]. 
This preoccupation stems from the relative simplicity of theoretical investigations and 
the feasibility of obtaining analytical solutions, identifying the principal gasdynamic 
characteristics of the generated flows, and both predicting and optimizing the gasdynamic 
possibilities of the analyzed launching configurations when the flow of detonation prod- 
ucts is assumed to be isentropic and the launched plate is assumed to be incompressible. 

The majority of the flow regions studied in [1-6] represent centered rarefaction waves, 
except that the centers of the waves can either be a part of or lie outside the analyzed 
region of flow of the detonation products, depending on the initial and boundary conditions 
of the problem. In this case the solutions can have regions where the families of recti- 
linear (u • c)-characteristics do not have a unique point of intersection (wave center), 
but form an envelope, which lies outside the investigated wave region. A similar situa- 
tion arises, e.g., in the convergence of the characteristics in a compression wave. The 
difference is that the envelope in the latter case is situated in the wave region. An 
equation has been derived [7] for the envelope of the family of characteristics of a sim- 
ple compression wave. In the present article we investigate a procedure for determining 
the envelope of the family of characteristics of a rarefaction wave. We analyze a method 
based on the equation for the envelope of a rarefaction Wave for solving the planar one- 
dimensional isentropic gasdynamic equations. 

One of the possible situations, which is associated with the occurrence of an envelope 
in the problem of the launching of a plate by detonation products is depicted in Fig. i, 
which shows the trajectory of the plate i, the envelope of the rarefaction wave 2, and the 
analyzed region I of flow of the detonation products. In this case the envelope is formed 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, 
pp. 51-56, November-December, 1988. Original article submitted July 28, 1987. 

808 0021-8944/88/2906-0808 $12.50 �9 1989 Plenum Publishing Corporation 


